erinary Surgery, 20, pp. 209–214.

os, C., Tzoracoleftherakis, E., Polychronis, A., Venizelos, B., Dafni, U.,

papadakis, G., Papadiamantis, J., Zobolas, V., Misitzis, J., Kalogerakos, K.,

antopoulou, A., Siasos, N., Koukouras, D., Antonopoulou, Z., Lazarou, S. and

gas, H. (2010). Management of anastrozole-induced bone loss in breast cancer

ents with oral risedronate: results from the ARBI prospective clinical trial,

ast Cancer Research, 12, pp. R24.

, Machart, P., Bansal, V., Kilian, C., Magruder, D. S., Krebs, C. F. and Bonn,

2020). Realistic in silico generation and augmentation of single-cell RNA-seq

a using generative adversarial networks, Nature Communications, 11, pp. 166.

Lavado, G. J., Como, F., Toropova, A. P., Toropov, A. A., Baderna, D.,

ppelli, C., Lombardo, A., Toma, C., Blázquez, M. and Benfenati, E. (2020).

AR models for biocides: the example of the prediction of Daphnia magna acute

icity, SAR QSAR Environmental Research, 31, pp. 227–243.

., Harmon, S. A., Mehralivand, S., Walker, S. M., Raviprakash, H., Bagci, U.,

oyke, P. L. and Turkbey, B. (2021). Quick guide on radiology image pre-

cessing for deep learning applications in prostate cancer research, Journal of

dical Imaging, doi: 10.1117/1.JMI.8.1.010901.

B. W. (1975). Comparison of the predicted and observed secondary structure of

phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure. 405,

442–451.

Carteret, C., Brie, D., Idier, J. and Humbert, B. (2005). background removal

m spectra by designing and minimising a non-quadratic cost function,

emometrics and Intelligent Laboratory Systems, 76, pp. 121–133.

F. (2008). Complexity in biology, European Mollecular Biology Organisation,

p. 10–14.

Cao, Y., Qin, J., Song, X., Zhang, Q., Shi, Y. and Cao, L. (2015). DNA

thylation, its mediators and genome integrity. International Journal of

logical Sciences, 11, pp. 604–617.

N. (1987). The beginning of the Monte Carlo method, Los Alamos Science, pp.

–130.

D. J. and Smyth, G. K. (2009). Testing significance relative to a fold-change

eshold is a TREAT. Bioinformatics, 25, pp. 765–771.

m, G. J. and Basford, K. E. (1988). Mixture Model: Inference and Applications

Clustering, (M. Dekker, New York).

Selevsek, N., Grossmann, J., Kilminster, T., Scanlon, T., Daniels, M., Nanni, P.,

ton, J., Oldham, C., Greeff, J., Chapwanya, A., Bergfelt, D. and de Almeida, A. M.

19). Ovine liver proteome: Assessing mechanisms of seasonal weight loss tolerance

ween Merino and Damara sheep, Journal of Proteomics, 191, pp. 180–190.

Horvath, S, and Geschwind, D. H. (2010). Divergence of human and mouse brain

nscriptome highlights Alzheimer disease pathways, Proceedings of the National

ademy of Sciences of the United States of America, 107, pp. 220–229.